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Abstract 

Particles passing through a laser focus in a flow 

cytometer cause time-dependent angular intensity 

distributions of the scattered light which can be detected as 

signal pulses. If no beamstop is used, effects of interference 

of the incident beam and the scattered light near the 

forward direction. We present angle-resolved 

measurements of such pulses for polymer microparticles 

using an optical fibre array and compare with simulation 

results based on Generalized Lorenz-Mie Theory. 

1 Introduction 
In a flow cytometer, microscopic objects of interest (e. g., 

cells or bacteria) pass through a laser focus, scatter light and 

thus create time-dependent angular intensity distributions. 

Here we discuss a novel detection principle where (i) time-

dependent signals are measured with (ii) an array of optical 

fibres instead of a single forward-scatter detector resulting 

in both, angular and temporal resolution of the scattered 

light. Extinction effects are observed in the pulses of near-

forward fibres due to interference between the incident 

beam and the scattered light. This leads to a variety of non-

trivial pulse shapes even for spherical particles (“beads”), 

which are used as “cell dummies”. For cells, this additional 

information about their light scattering properties can allow 

for a classification without the need for fluorescent 

labelling. We discuss how this measurement principle can 

be mathematically modelled and simulated using 

Generalized Lorenz-Mie Theory (GLMT) for the scattering 

of off-axis elliptical Gaussian beams by spherical particles 

and compare the simulation results with measurement data 

for polystyrene beads. 

2 Experiment 
The measurement setup was recently presented in [1]. In 

short, a commercial flow cytometer was equipped with 

custom-made signal acquisition electronics, modified 

optics, and a fiber array to combine the angle- and time-

resolved forward scatter detection. The cytometer features 

a 488 nm laser for light scattering measurements, which is 

shaped to an elliptical focus with aspect ratio 1:6 and then 

focused into the flow cell. The short axis of the ellipse is 

oriented along the flow direction (𝑥 direction). A schematic 

view is shown in Figure 1. The light coming from the flow 

cell is collimated and detected using an array of fibers 

(Figure 2), connected to photomultiplier tubes. Most of the 

fibers only detect light when a particle passes the laser and 

scattering occurs. Several of the innermost fibers, however, 

are directly illuminated by the laser beam due to its finite 

divergence, such that their intensity can both increase or 

decrease when a particle passes. 

Figure 1 Illustration of the flow-cytometric detection 

system discussed here (not to scale). Instead of a single 

detector, an array of optical fibres is positioned in the 

detection plane of the forward-scatter channel. The fibres 

collect light scattered by a single particle (dark blue disk) 

in different angles (indicated by the cyan rays). 

Figure 2 Fibre layout and numbering. Note the flow 

direction. 

→  Flow direction 
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3 Theory 

3.1 Elliptical Gaussian beams 

A ei𝜔𝑡  time dependence is assumed for all time-

harmonic fields. We model the focused laser beam of the 

cytometer as an elliptical Gaussian beam (EGB) or “laser-

sheet” focused at the point 𝐫0 = (𝑥0, 𝑦0, 𝑧0) . We define 

beam-centered coordinates (𝑢, 𝑣, 𝑤) := 𝐫 − 𝐫0 = (𝑥, 𝑦, 𝑧) −

(𝑥0, 𝑦0, 𝑧0) . The beam propagates along the 𝑤  (or 𝑧 ) 

direction (left to right in Figure 1, out of the image plane in 

Figure 2) and is polarized in the 𝑢𝑤 (or 𝑥𝑧) plane (image 

plane in Figure 1). The field of an EGB with waist semiaxes 

𝑤0𝑥, 𝑤0𝑦 along the 𝑥 and 𝑦 directions, respectively, reads 

𝐄inc = (𝐸𝑢, 𝐸𝑣 , 𝐸𝑤) = (1,0, −
2 𝑠𝑥 𝑄𝑥  𝑢

𝑤0𝑥
) 𝐸0𝛹0e

−i𝑘 𝑤 , (1) 

where the wavevector is given by 𝑘 = 2𝜋/𝜆  and 𝜆  is the 

wavelength in the respective host medium (here water) and 

the two waist parameters are given by 𝑠𝑥 = 1/(𝑘 𝑤0𝑥), 𝑠𝑦 =

1/(𝑘 𝑤0𝑦) [2]. The envelope function reads 

𝛹0 = i√𝑄𝑥  𝑄𝑦  e
−i𝑄𝑥

𝑢2

𝑤0𝑥
2 −i𝑄𝑦

𝑣2

𝑤0𝑦
2

 

with 𝑄𝑗 =
1

i + 2 𝑠𝑗
𝑤
𝑤0𝑗

, 𝑗 = 𝑥, 𝑦. 

(2) 

The above expression represents the so-called “order 𝐿 of 

approximation” and holds for sufficiently small values of 

𝑠 = max(𝑠𝑥, 𝑠𝑦). 

3.2 Far-field limit of elliptical Gaussian beams 

The detection optics are assumed to be in the far-field, 

i. e., 𝑟 → ∞ . Here, the scattered field is asymptotically 

equivalent to an outgoing spherical wave with a direction-

dependent amplitude: 

𝐄sca(𝑟, 𝜗, 𝜑) ∼ 𝓔sca(𝜗, 𝜑)  
e−i𝑘𝑟

𝑘𝑟
 at 𝑟 → ∞. (3) 

In order to describe the interference of 𝐄sca and 𝐄inc, we 

also take the far-field limit of the latter. I. e., in beam-

centered spherical coordinates 𝑞, 𝜃, 𝜙 that correspond to the 

Cartesian coordinates 𝑢, 𝑣, 𝑤 , we let 𝑞 → ∞  (i. e., much 

larger than the length scales of the beam). The EGB then 

takes the shape of an elliptical cone. The corresponding 

envelope function will exponentially suppress the field for 

large tan𝜃/𝑠, such that tan𝜃 = 𝒪(𝑠). I. e., we must neglect 

any terms of non-leading order in tan𝜃 or sin𝜃, because the 

order 𝐿  of approximation already neglected higher order 

terms in 𝑠. Otherwise, unphysical phase errors can occur. 

This leads to 

𝐄inc(𝑞, 𝜃, 𝜙) ∼ 𝓔inc(𝜃, 𝜙)

{
 
 

 
 e

−i𝑘𝑞

𝑘 𝑞
  for cos𝜃 > 0

e+i𝑘𝑞

𝑘 𝑞
for cos𝜃 < 0

  (4) 

at 𝑞 → ∞  with the vector components in spherical 

coordinates 

𝓔inc = (𝐸𝑞 , 𝐸𝜃 , 𝐸𝜙) =
i

2 𝑠𝑥𝑠𝑦
  e
−
tan𝜃2

4 (
cos𝜙2

𝑠𝑥
2 +

sin𝜙2

𝑠𝑦
2 )

 

                                  ⋅ (0, cos𝜙,−sgn(cos𝜃)sin𝜙). 

(5) 

I. e., the Gaussian beam behaves like a transverse spherical 

wave with an angle-dependent envelope. Because the beam 

itself is not radiating from any sources at finite positions 

and propagates from 𝑤 = −∞ to 𝑤 = +∞, it behaves like an 

incoming spherical wave in the backward direction (cos𝜃 <

0, 𝑤 < 0) and like an outgoing spherical wave in the forward 

direction (cos𝜃 > 0 , 𝑤 > 0 ), which agrees with physical 

intuition. 

3.3 Generalized Lorenz-Mie Theory 

GLMT [3] describes the scattering of a focused beam by 

a (typically homogeneous) spherical particle. In GLMT, the 

particle is located at the origin of the coordinate system 

𝑥, 𝑦, 𝑧. The corresponding spherical coordinates are 𝑟, 𝜗, 𝜑. 

All fields are expressed in eigenfunctions of the Helmholtz 

operator – (vector) spherical wavefunctions. For example, 

the 𝜗 component of the scattered field reads: 

𝐸𝜗
sca =

−𝐸0
𝑘𝑟

∑ ∑ (−i)𝑛+1
𝑛

𝑚=−𝑛

∞

𝑛=1

2𝑛 + 1

𝑛(𝑛 + 1)
 

                   ⋅ {𝑎𝑛  𝑔𝑛,TM
𝑚  𝜉𝑛

′ (𝑘𝑟) 
d

d𝜗
𝑃𝑛
|𝑚|(cos𝜗) 

                 +𝑚 𝑏𝑛  𝑔𝑛,TE
𝑚  𝜉𝑛(𝑘𝑟)

𝑃𝑛
|𝑚|(cos𝜗)

sin𝜗
} ei𝑚𝜑 

(6) 

with the Riccati-Bessel function 𝜉𝑛(𝑥) := 𝑥 ℎ𝑛
(2)(𝑥) 

corresponding to outgoing waves. 𝑃𝑛
𝑚  are the associated 

Legendre functions. 

The scattering coefficients 𝑎𝑛, 𝑏𝑛 of the spherical particle 

are those of standard (i. e., plane wave) Lorenz-Mie Theory. 

Furthermore, the GLMT contains beam shape coefficients 

(BSCs) 𝑔𝑛,.
𝑚  that describe the focused beam. The BSCs can 

Figure 1 Simulated far-field intensity patterns of 

the total field 𝓔tot = 𝓔inc + 𝓔sca 
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generally not be computed in closed form. Here, we use the 

so-called integral localized approximation (ILA) [4] to 

compute the BSCs. For EGBs, the ILA has favorable 

numerical stability and complexity compared to the (non-

integral) localized approximation [5]. 

3.4 Computations 

As a basis for our far-field GLMT computations we use 

the Fortran code provided with the textbook by Gouesbet 

and Gréhan [3], for which a Python wrapper was written. 

This was complemented with a Python implementation of 

EGBs, i. e., BSCs computation with ILA and the far-field 

expressions in Eq. (4). This allows us to compute the 

“outgoing spherical wave” part of both, incident and 

scattered field that determine the intensity in the forward 

direction. 

To transform from the particle-centered GLMT to the 

beam-centered laboratory system in the far-field picture, 

i. e., to account for the shifted origin 𝐫 = 𝐪 + 𝐫0, the phase 

relation between 𝓔inc and 𝓔sca is obtained by inserting 
1

𝑘𝑟
e−i𝑘𝑟 =

1

𝑘𝑞
 e−i𝑘𝑞e−i𝑘(𝐫⋅𝐫0)/𝑟 as 𝑞, 𝑟 ≫ |𝐫0| (7) 

in Eq. (3) and identifying 𝜗 ↔ 𝜃, 𝜑 ↔ 𝜙. This allows us to 

compute 𝓔tot = 𝓔inc + 𝓔sca  [Eq. (3) and (4)] for a set of 

directions 𝜃,𝜙 and determine the intensity ℐtot = |𝓔tot|2. 

4 Results and discussion 
Figure 3 shows simulated intensity patterns for a single 

polystyrene bead ( 𝑑 = 6.11 μm,𝑛PS = 1.6054 − 0i  [6]) in 

water (𝑛m = 1.3374 [7]) at 𝜆 = 488 nm/𝑛m. They exhibit the 

typical circular pattern of spherical scatterers, interference 

near the edges of the EGB as well as a significant 

dependence on the particle position. To account for the fact 

that the scattering takes place in water and the detector is 

placed in air (Fig. 1), we applied Snell’s law to transform the 

scattering angle 𝜃 from water to air. The intensity pattern 

ℐtot(𝜃(air), 𝜙) can now be integrated over the solid angle of 

the individual fibres (coloured circles in Figure 3). 

Repeating this for a range of beam/particle positions 𝐫0 =

−𝐫p simulates the intensity variations during particle transit 

and yields a set of intensity pulses that can be compared 

with measurements. Figure 4 shows measurement and 

simulation results for the corresponding pulses. The 

estimated flow speed in the cytometer is 𝑣 = (3.5 ± 0.4) m/

s, such that the 28 μm length interval shown for 𝑥p in the 

simulations corresponds to the 8 μs time interval [𝑣 𝛥𝑡 =

(28 ± 3) μm] in the measurements. As can be seen, both, the 

complex shape of the pulses as well as their length is well 

described by the simulations. 

The concept presented here to model interference of 𝐄inc 

and 𝐄sca in the far-field is not limited to GLMT, but can be 

extended to other (numerical) frameworks for light-

scattering that allow for off-axis scattering with focused 

beams, such as the discrete dipole approximation or T-

matrix methods. Perspectively, this allows to simulate such 

interference for non-spherical particles of suitable size 

parameters, too. 
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Figure 2 Intensity pulse shapes for 6.11 µm polystyrene particles on fibres 1–5 (along the flow direction, see Figure 

2). Top: Measurement results for ca. 104 events (mean ± standard deviation). Bottom: Simulation results. 


