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Abstract 

As a kind of artificial electromagnetic interface, optical 

metasurface performs well in the manipulation and control 

of the beam. The inverse design of the characteristic 

parameters based on the objective can be applied to the 

design of the metasurface structure through the 

combination of artificial intelligence algorithm and 

numerical simulation. It presets the structure shape of the 

metasurface according to the optimization target, 

determines the parameter to be optimized and its value 

range, and then selects the appropriate optimization 

algorithm for optimization, including genetic algorithm, 

gradient descent algorithm, and density penalty algorithm, 

etc. According to the objective of optimization, the 

objective function is written, and the required parameters 

are optimized. 

1  Introduction 
As a kind of artificial material, metasurface has 

attracted much attention due to its flexible optical 

operation over subwavelength propagation distance [1-3]. 

It consists of a series of planar artificial units arranged and 

combined in a specific order. Based on Huygens principle, 

the artificial units in different areas of the plane are 

precisely designed to obtain the metasurface with various 

electromagnetic wave reflection or transmission phase 

distribution, which can realize the high efficient control of 

electromagnetic wave[4,5]. 

The traditional design is to accurately predict the 

spectral properties and functions of the metasurface by 

applying iterative calculation scheme combined with FEM 

[6,7] or FDTD[8,9], and then prepare the metasurface 

nanostructures according to the model. A set of discrete 

elements is obtained by calculating the phase amplitude 

variation of the radiation field in the whole parameter 

space. For FDTD, the process of TDTD is as follows: the 

differential expression in Maxwell's domain field curl 

equation is replaced by the finite difference expression, so 

as to obtain the finite difference expression of the field 

components. For the object under study, we can use the 

same grid of electrical parameters for simulation, select a 

reasonable initial value of the field and the boundary 

conditions of the calculation space for calculating, obtain 

the numerical solution of Maxwell's equations with time 

factor, and obtain the frequency domain solution in the 

three-dimensional space through Fourier transform. The 

motion law and process of electromagnetic wave in 

electromagnetic field are simulated by computer [10]. 

However, the calculation and design process of traditional 

design methods are complicated and time-consuming. 

Moreover, the shape of the designed metasurface is 

relatively regular, and the ability to control the beam is 

also limited. 

The main work is to realize the inverse design of the 

metasurface by training a deep neural network and realize 

beamforming. Unlike most works, which relying on the 

training set of known devices, the core idea of this paper is 

directly learning the physical relationship between device 

geometry and response through electromagnetic 

simulations. Then, the trained network will promptly 

calculate the requirements of the target and output a 

metasurface structure that matches the expected target.   

2 Method 
In the one-dimensional case, the EM wave propagates 

along the z-axis, and the medium parameters and field 

quantities are independent of x, y, 0x  = , 0y  = , so 

Maxwell's equation[11] is 
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Sampling of E and H component space nodes in one-

dimensional case is shown in the figure. 

 

Figure 1 Sampling of E and H component space nodes in 

one-dimensional case. 

The FDTD dispersion of equation (1-2) are 
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Among them, CA, CB, CP, CQ are respectively                       0
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where m represents a set of integers or half-integers at the 

observation point , ,x y z（ ）. 

For functions defined in the discrete domain, 

convolution is defined as 

( )[ ] [ ] [ ]
n

f g m f n g m n = −                       (5) 

In a convolutional neural network[12-15], if the input 

size is set as  ( , , , )inN C H W  , the output size is 

( , , , )out out outN C H W  , then the mathematical expression of the 

convolutional layer is 
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where input and out represent the input and output data 

of the current convolutional layer respectively. Weight and 

bias represent the current volume respectively the weight 

parameters and bias parameters of the layer. 

Ignore the bias, the padding is 1, the size of the 

convolution kernel is 3 3  , and the calculation formula of 

the output coordinate point ( , )i j of the convolution layer is 
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In the one-dimensional case, 
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We can change the value of W to achieve forward or 

backward differentiation. In the one-dimensional case, 

when the corresponding parameters of the convolution 

kernel are the same as the difference, the difference can be  

regarded as a special convolution, and the mathematical 

equivalence relationship makes it possible to use the 

convolution instead of the difference to implement the 

FDTD method. This also provides a theoretical basis for 

the neural network to directly learn the physical 

relationship between device geometry and response 

through electromagnetic simulation during the design of 

metasurface. 

 

 

 

 

 

 

 

 

Figure 2 Convolution operation. 

 

3 Discussion and conclusion 
In this work, in the design process of using neural 

network to realize metasurface, we realize the inverse 

design of metasurface by directly learning the physical 

relationship between device geometry and response by 

combining electromagnetic simulation, in order to avoid 

the preparation of large data sets, to realize the purpose of 

beamforming. 
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