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Abstract 

The influence of non-diffractive scattering 

mechanisms in the formation and analysis of Digital-In-

Line (DIH) holograms is studied. The electromagnetic 

calculations are performed with the Generalized Lorenz-

Mie Theory (GLMT), as well as Debye’s series and the 

localization principle. Numerical results clearly 

demonstrate the importance to account for partially 

refracted waves and, to a lesser extend, of edge waves 

effects.  

1 Introduction 
DIH is generally considered to be a laser diffraction 

technique operating in the near-field (i.e. for Fresnel 

numbers, F 1 [1]). As the result of a pure diffraction 

process, induced by the discontinuity in the optical 

properties of the propagating medium at the particle 

boundary (2D projected contour of the particle), the 

hologram characteristics are thus independent from the 

particle material properties. Therefore, the hologram 

formation can be simply modelled with the scalar 

diffraction theory and a particle model reduced to a two-

dimensional opaque disk (or a pinhole, according to 

Babinet’s principle)[1]. 

However, in the recent years, several groups have 

demonstrated that with DIH the refractive index of a 

spherical particle can be measured, with a reasonable 

accuracy, from the analysis of its hologram. For micron-

sized particles, this measure of the refractive index is 

obtained using a parametric method fitting the particle 

hologram intensity profile with those calculated with the 

Lorenz-Mie Theory (LMT, e.g. [2, 3]). For larger particles, 

the refractive index can be measured directly from the 

analysing of the relative position of the photonic jet (PJ, 

also called the focusing or forward caustic region [4-7]) 

produced by rays that are single refracted within the 

particle [8]. These two approaches clearly infirm the 

aforementioned vision of hologram formation. To go 

further on, and most notably to extract more accurate or 

additional data from particle holograms, it is 

fundamental to better understand how the particle 

material properties and the various scattering 

mechanisms influence the formation of a hologram. This 

is important whether the particle properties are retrieved 

from the hologram directly, with a back propagation 

method (e.g. [4, 9, 10]), or with an inverse approach (e.g. 

[11, 12]).  

The goal of the present work is precisely to investigate 

these relative contributions and more specially the non-

diffractive scattering mechanisms. The extended abstract 

is organized as follows. After this brief introduction, 

section 2 introduces and discusses the basic equations to 

calculate rigorously, in the frame of the GLMT, the 

properties of the holograms formed by a spherical 

particle that is illuminated by a plane wave or a shaped 

electromagnetic beam. Afterwards, the principle of the 

Debye series decomposition and the localization 

principle (LP) are employed to evaluate the contributions 

of the different scattering mechanisms. Section 3 briefly 

summarizes the basic steps of the code developed to 

perform these calculations as well the backpropagation of 

holograms. The paper concludes with section 4, where 

exemplifying numerical results are presented and 

discussed.  

2 Excact calculation of hologram formation 

2.1 Generalized Lorenz-Mie theory 

A spherical particles, with radius a  and refractive 

index p
m , is located in a continuous medium with 

refractive index 
0

m  . The particle is centered in the 

Cartesian coordinate system ( )Oxyz  and the spherical 

coordinate system ( )Or  where, classically,  is the 

scattering angle [13]. The observation plane ( )p p
O xyz ,  

also referred as the hologram-recording plan (or CCD 

chip), is parallel to ( )xy  and distant of p
z  from the 

particle centre. The particle, with relative refractive index 

r p 0
m m / m= , is illuminated by an incident harmonic 

beam, with wavelength 
0

  and beam waist 
0

 , 

propagating along z. According to the GLMT [14, 15], the 

components of the electrical field vector ( )sE r  that is 

scattered by the particle in the near or far-fields read as:  
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where ( )n n n
, ,     stand for Ricatti-Bessel functions 

and their derivatives, 
0 0

k 2 /=    and 
0

E  for the wave 

vector and the amplitude of the incident beam at a 

particular point, pw

n
c  is a coefficient specific to the plane 

wave illumination case with  

( ) ( ) ( )
npw 1 n 1

n 0
c k i 1 2n 1 n n 1− −  = − + +   (2) 

The radial functions 
m

n
P , and 

m m

n n
,   are the 

associated Legendres polynomials and the generalized 

Legendres functions respectively, 
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where 
n

P and d  stand for the Legendres polynomials 

of order n  and the derivative operator respectively. The 

coefficients m m

n n,TM n
A g a=  and m m

n n,TE n
B g b= , where TM 

and TE stand for Transversal Magnetic (i.e. parallel 

polarization component) and Transversal Electric (i.e. 

perpendicular polarization component), are the 

generalized external scattering coefficients. They account 

for the particle shape via the external particle scattering 

coefficients 
n n

a ,b  of the LMT, for homogeneous [13] (or 

multilayered [14]) spheres. The m

n
A  and m

n
B  also account 

for the beam shape through the beam shape coefficients 

(BSC) m m

n,TM n,TE
g ,  g  of the GLMT [15]. The integer numbers 

n and m stand for the expansion number of the LMT and 

the beam azimuth number of GLMT respectively. The 

analysis of the convergence of the infinite series (such as 

Eq. (1), or more simply 
n n

a ,b [13]) show that, after a slow 

oscillating behaviour, they converge rapidly when the 

value of n  exceed the particle size parameter, ka . So 

that, the infinite series can be truncated and the limit 

n→+  replaced by a maximum value 
max

n  estimated 

numerically with a fitting procedure. In the case of 

intermediate sized particles (i.e. 8 ka 4200  ) [16], one 

can use:  

( )
1 3

max 0 max 0
n k a k a 2= +  +  (4) 

with max
4.05 = . More details about the magnetic 

field and internal fields components as well as the 

different ways to calculate the BSC can be found in Refs. 

[14, 15]. 

2.2 Debye series and localization principle  

From the expansion series of the LMT and the GLMT, 

little can be said about the particle scattering 

mechanisms. Debye series allow clarifying the situation 

by decomposing the series of the LMT in terms of partial 

waves that are meaningful in the frame of the more 

intuitive Geometrical Optics Approximation (GOA). For 

instance, the external scattering coefficient of a 

homogeneous spherical particle maybe rearranged as 

follows:  

 ( ) ( ) ( )
p 1n,p (22) (21) (11) (12)

n , n , n , n ,

n ,p

a
1 2 1  R T R T  

b

−
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 (5)  

where TE =  for 
n

a  and TM  =  for 
n

b , p  stands 

for the partial wave and scattering mechanism order 

(with p 1=  for single refraction, p 2=  for double 

refraction, etc.). The coefficients (22) (11) (21)

n , n , n ,
R ,R ,T

  
 and (12)

n ,,
T


, 

whose expressions can be found in Ref. [17], correspond, 

respectively, to reflections of partial waves on the outer 

and the inner surface of the particle, and transmissions 

into and out of the particle. The external (as well the 

internal) scattering coefficients of the LMT can be 

retrieved from Debye series by summing all possible 

partial waves:  

 ( ) ( )
p 1

(22) (21) (11) (12)n
n, n, n , n ,

p 1n

a
1 2 1  R T R T  

b

+ −

   
=

 
= − −  

  
  (6) 

 Actually, in Eqs. (5) and (6), the last term into the 

brackets correspond to the different refracting processes 

(p 1,2,3...,=  which intensity decrease rapidly for 

increasing p  ), while the first two terms, ( )(22)

n,
1  R


− , 

account for three scattering processes that are 

encompassed in the scattering order ( )p 0= . The unit 

value is associated to a pure diffractive term [18, 19] since 

it is totally independent upon the particle material 

properties. In wave optics, it is this single term that it is 

generally assumed responsible for holograms formation. 

The second term, (22)

n ,
R


 accounts for closely related 

scattering processes: surface waves, and grazing plus 

tunnelling rays. It is not possible to properly separate the 

later contributions in the frame of Debye series. 

However, this can be partly completed, approximatively, 

by invoking the localization principle (LP) introduced by 

Huslt’s [8].  

According to the LP, the expansion term n  is also a 

partial wave number identifying rays (partial waves 

indeed) that hits or graze the particle surface at different 

distances 
n

 from its centre  

( )n 0
n 1 2 k= +  (7) 

For 0
n 1 2 k a+ = , this distance corresponds exactly to 

the particle radius a . The LP allows giving some 

meaning to Eq. (4). The first time ka  corresponds to a 

region (from n=1 to n   
0

k a ) where refracted and 

specular processes interact directly with the particle 

surface, while the second term ( )
1 3

max 0
k a  corresponds 

to the width of a corona region surrounding the particle 

where grazing and tunnelling rays as well as surface 

wave effects take place [19]. The constant 2 is a fitting 

value ensuring a good convergence of the LMT series in a 

large variety of cases (i.e. particle size and refractive 

index ranges)[16].  
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3 Numerical calculation of hologram formation 
and backpropagation  

The previous considerations have been implemented 

in a Matlab code allowing calculating accurately all the 

properties (amplitude, phase and intensity) of the 

incident, the internal, the scattered and the total 

electromagnetic field (incident plus scattered). The total 

electromagnetic intensity in the hologram-recording 

plane is simply a particular case. By using Debye series to 

calculate the external and internal scattering coefficients, 

the code  allows separating the relative contributions (or 

calculate interference effects) of all refractive terms 

( )p 1,2,3...=  plus the pure diffractive term (contained in 

p 0).=  Then, the LP is used to truncate Debye’s series in 

order to separate the grazing-plus-tunnelling 

contributions from the surface waves contributions. 

Particular attention has been paid to the numerical 

stability of the calculations for particles with a large size 

parameter. For the hologram back-propagation, the 

Fresnel or Rayleigh-Sommerfeld approximations are 

used as depicted in Ref. [4].  

4 Results and discusion  
The numerical results presented herein allows to 

highlight various features of the “Photonic Jet Method” 

that was introduced to estimate simultaneously the 

particle size, refractive index, 3D position and dynamics 

[4, 5, 7]. Fig. 1 (a) shows, from top to bottom, the direct 

calculation of the total electromagnetic intensity in the 

near-field and the (yz) plan, some contour lines of the 

unwrapped phase of the total electrical field, and the 

near-field intensity profile along the optical axis of an oil 

droplet in water. The latter, with radius a=50µm and 

relative refractive index m 1.0832= , is illuminated by a 

non-polarized plane wave with wavelength 

0.4753µm.=  While Fig. 1 (a) accounts for all scattering 

processes (full LMT results), Fig. 1 (b-d) accounts only for 

(b) pure diffraction, (c) all non-diffractive terms included 

in the order ( )p 0 ,=  i.e. specular, grazing, tunnelling 

and surface waves and (d) for the single refraction 

( )p 1= . One can notice in Fig. 1 (a) the good agreement 

between LMT and Debye ( )p 0,1, ,100=  results for the 

external as well as for the internal field. In Fig. 1 (b), the 

contribution of the non-diffractive components in the PJ 

region are clearly noticeable, when Fig. 1 (d) suggests 

that the structure of the caustic generated by refracted 

rays may be more complex that the one predicted by a 

GOA. The latter remarks are important for any attempt to 

develop a GOA or a Physical Optics Approximation 

(POA) of the PJ reconstruction.  

Looking at the far field, it is again that the non-

diffractive terms have a visible influence on the hologram 

characteristics, see Fig. 2. The parameters used for these 

simulations are identical to ones of the experimental 

setup of refs [5] (i.e. 4 megapixels camera located at 10 cm 

from a water droplet in air with diameter 1 mm,  =   

Figure 1 Near-field intensity map, unwrapped phase and axial-

intensity profile when (a) all scattering process are included, 

(b) only pure diffraction, (c) only edge-wave contributions 

excluding pure diffraction and (c) only single refraction. 

Scatterer: oil droplet in water (k0a=661). 
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0.633µm). Fig. 3 shows the results obtained when two 

of these holograms (pure diffraction and single 

refraction) are back propagated. It is found that the 

differences are rather small between the axial intensity 

profiles of the PJ retrieved with the single term ( )p 1=  

and with full calculations. However, the contrast of the 

reconstructed PJ, regarding the surrounding background, 

appears rather noisy, suggesting that the single refractive 

term is not enough to fully describe the forward caustic 

region.  
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Figure 2 Holograms (gray images) and their radial intensity 

profiles when all scattering processes are taken into account 

(Mie), only pure diffraction (p=0diff), only single refraction 

(p=1), single refraction and reflections (p=0all+1). Water droplet 

in air (k0a =4963). 

 

Figure 3 Backpropagation of holograms of Fig. 2 and 

corresponding axial intensity profiles in the PJ region.  

 


