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Abstract 

We examine various features of scattering of a plane 

wave by a spherical or spheroidal bubble floating in air.  

We interpret the pattern of glare points observed on the 

far-zone image of the bubble, and the near-zone sagittal 

caustic of light scattered following one internal reflection.  

We find the symmetry inherent in these features for a 

spherical bubble is broken as the bubble is deformed into a 

shape of lower symmetry.  

1 Introduction 
We consider a linearly polarized monochromatic plane 

wave of light of wavelength λ incident on a nonabsorbing 

spherical bubble floating in air.  The bubble has inner 

radius a and film thickness d<<a, with a~O(cm), and 

d~O(μm).  The bubble film has real refractive index n, and 

both the region exterior to the bubble film and the interior 

of the bubble have unit refractive index.  Rays are 

transmitted into the bubble, and internally reflect p-1 times 

from the bubble film before being transmitted out.     

When an observer stands in the far-zone at a scattering 

angle Θscatt in the backward hemisphere and looks at a 

floating bubble illuminated by sunlight, he sees a sequence 

of glare points to each side of center that appear to lie on 

the image of the bubble.  The observed glare points lie in 

the plane containing the bubble’s center, the observer, and 

the light source.  They are progressively closer together 

and become progressively dimmer as they approach the 

edge of the image of the bubble.  Photographs illustrating 

this effect and taken by one of the authors (M.S.) are 

reproduced here as Figs.1,2.  The location, intensity, and 

color of the glare points as viewed by the observer depend 

on the scattering angle and far-zone intensity of the light 

scattered by the bubble.     

Since a spherical floating bubble is a surface of 

revolution with respect to the propagation direction of the 

incident plane wave, the two branches of the near-zone 

caustic of the scattered rays for each value of p can 

straightforwardly be determined.  The tangential caustic is 

obtained by finding the locus of the intersection points of 

adjacent converging rays that are confined to a single 

plane.  The tangential caustic for each value of p lies 

entirely inside the bubble and is not considered further 

here.   The sagittal caustic is obtained by determining the 

locus the positions where azimuthal families of rays 

making p-1 internal reflections cross the z axis.  The sagittal 

caustics on the positive z axis outside the bubble surface 

decrease very quickly in intensity as a function of z.  As a 

result, in order to view the sagittal caustic, a viewing 

screen must be placed behind the bubble close to the 

floating bubble surface.  This is also illustrated in Fig.1. 

2 Floating Bubble Ray Theory 
The floating bubble geometry is a special case of a 

coated sphere.  In the short wavelength limit, 2πa/λ~105 we 

use a simplified version of coated sphere ray theory [1].  

The usual reflection law is assumed to hold for a ray 

internally or externally reflected by the thin bubble film.  

We also assume that rays are transmitted through the thin 

bubble film without deflection.  We model the intensity of 

the reflected and transmitted parts of the incident 

broadband spectrum at each interaction with the surface in 

three stages.  First, the intensity Fresnel coefficient for 

coherent monochromatic light for a single flat interface 

between the bubble film and the air outside or inside the 

bubble is denoted by R for either the transverse electric or 

transverse magnetic polarization. 

We are interested in the simplifications that occur for 

near-grazing rays, where the angle of incidence θi0 is near 

90°.  We define the small quantity σ<<1 for these rays by   

σ ≡ cos(θi0) .                                                                  (1) 

Then for rays with near-grazing incidence,  

R = 1- ασ + O(σ2) ,                                                         (2) 

where α is a polarization-dependent constant of 

proportionality.  Second, one sums the infinite series of 

successive coherent interactions of a ray with the outer and 

inner surfaces of the film.  The resulting coherent intensity 

Fresnel coefficient for transmission through the film is 

Tfilmcoh and the resulting coherent intensity Fresnel 

coefficient for reflection by the film is Rfilmcoh.  Third, the 

floating bubble is illuminated by broadband visible 

sunlight.  Thus, the monochromatic intensity Fresnel 

coefficients must be integrated over both the source 

spectrum and the sensitivity of the eye of the observer for 

0.4μm≈λmin≤λ≤λmax≈0.7μm.  We make the simplifying 

assumptions that (i), both the source spectrum and the 

sensitivity of the eye of the observer are flat between λmin 

and λmax, and (ii) the film thickness is sufficiently large that 

the phase ε of the interference between successive paths in 

the film varies by at least O(π) in this wavelength interval.  

The spectrum-averaged intensity Fresnel coefficient for 
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internal or external reflection of an incident ray by the thin 

film is then approximated by  

(Rfilm)ave ≈ (1/π) ∫0π dε Rfilmcoh  ,                                       (3) 

and the spectrum-averaged intensity coefficient for 

transmission into the bubble interior and transmission 

back out following p-1 internal reflections is approximated 

by   

(Tfilm Rfilmp-1 Tfilm)ave ≈ (1/π) ∫0π dε Tfilmcoh (Rfilmcoh)p-1Tcohfilm . (4)                                                                                           

      Assuming that the incident wave propagates in the +z 

direction, we let Θp(θi0) be the deflection angle of the 

incident ray whose angle of incidence is θi0 at the outer 

surface of the bubble film, and that makes p-1 internal 

reflections before exiting.  for p=0 external reflection we 

have 

Θ0(θi0) = π + 2θi0 ,                                                             (5) 

and for p≥2 we have       

Θp(θi0) = (p-1)(π - 2θi0) .                                                   (6) 

We obtain the far-zone intensity of the light scattered by 

a spherical floating bubble using flux conservation.  We 

assume that successive interactions of a ray with the 

bubble film at different locations on the floating bubble are 

incoherent with respect to each other.  This assumption is 

valid because the path length of the ray between these 

interactions is comparable to the bubble radius, typically 

~O(cm) or ~O(mm) for near-grazing incident rays, while 

the bubble film thickness and the longitudinal coherence 

length of sunlight are ~O(μm).  The far-zone scattered 

intensity for rays making p-1 internal reflections at the 

spherical bubble film for p≥2 is  

Ipscatt(Θscatt)=Iinc(a/Rvs)2[1/2(p-1)][sin(θi0) cos(θi0)/sin(Θscatt)] 

                  × [Tfilm(θi0) Rfilmp-1(θi0) Tfilm(θi0)]ave ,                (7) 

where Iinc is the intensity of the incoming ray, and Rvs is the 

distance from the center of the floating bubble to the far-

zone viewing screen, and the scattering angle Θscatt 

associated with the deflection angle Θp lies within the 

interval 0°≤Θscatt≤180°.  The polarization of the spectrum-

averaged intensity coefficients depends on the plane of 

incidence of the ray.  Similarly, the externally reflected 

contribution to the scattered intensity is 

I0scatt(Θscatt) = Iinc (a/2Rvs)2 [Rfilm(θi0)]ave .                            (8)  

Since the directly transmitted light is forward-propagating, 

it is combined with diffraction to obtain I1scatt(Θscatt) in the 

near-forward direction.   

3 Reflection Glare Points of a Spherical Floating 
Bubble 

When the far-zone observer either focuses his eyes on 

the bubble or photographs it, he records the magnitude-

squared of the Fourier transform of the far-zone scattered 

intensity that is windowed in an interval centered on Θscatt, 

whose width is determined by the eye’s or camera’s 

aperture [2].  Let the coordinate χ extend from edge to 

edge, -L≤χ≤L, on the equator of the image of the bubble 

recorded by the observer.  The location of the center of the 

M≥0 glare spot for p-1 internal reflections of the ray from 

the bubble film with p≥2 is then [2,3] 

χp,M = L cos{(Θscatt+2πM)/[2(p-1)]} ,                             (9) 

where the range of allowed values of M are 

0 ≤ (Θscatt + 2πM)/[2(p-1)] ≤ π .                                    (10) 

The center of the external reflection glare point for 

(p,M)=(0,0) occurs at  

χ0,0 = -L cos(Θscatt/2)                                                        (11) 

corresponding to the angle of incidence -θi0.  The center of 

the one-internal-reflection glare point for (p,M)=(2,0) 

occurs at 

χ2,0 = L cos(Θscatt/2)                                                         (12) 

corresponding to the angle of incidence of +θi0.   These two 

glare points are symmetrically located on the equator of 

the image of the spherical floating bubble, and with Θscatt in 

the backward hemisphere, are the brightest glare spots 

observed.  Their intensity ratio is  

I2,0glare / I0,0glare = (1-R)(1-R+R2)/(1+R4) .                          (13) 

If the bubble film has n=1.333, the glare point intensity 

ratio decreases from 0.886 to zero as the observer moves 

from Θscatt=180° where θi0=±0°, to Θscatt=0° where θi0=±90°.   

      When the observer is in the backward hemisphere, 

the sequence of closely-spaced glare points seen near the 

edge of the bubble, and which are due to rays having near-

grazing incidence, become progressively dimmer as 

χ→|L| because  

 I p,Mglare ∝ σ2 .                                                                    (14) 

From top to bottom in Fig.1, the visible glare points are 

7≥p≥2,M=0, then p=0,M=0, then 3≤p≤8,M=p-2.  The 

scattering angle of the observer is Θscatt≈133°. 

4 Sagittal Caustic of a Spherical Floating Bubble 
The parametric equation of the sagittal caustic as a 

function of p and 0≤|θi0|≤90° is 

zs = (-1)p a sin(|θi0|) / sin[2(p-1)|θi0|]                        (15a) 

ρs = 0 .                                                                             (15b) 

Each value of p contributes its own sagittal caustic, and all 

the sagittal caustics lie on top of each other on the z axis.  

The p=2 sagittal caustic lies inside the bubble for 0°≤ 

θi0≤60°, and outside the bubble on the +z axis for 60°< 

θi0≤90°.  Its location on the z axis as a function of σ in the 

near-grazing incidence regime is  

zs ≈ a/2σ + O(σ2),                                                             (16) 

and its relative intensity, [4]  

Irel ≈ Iinc (1/128) αa5/z4 ,                                                    (17) 

falls off very rapidly as a function of z. 

5 Reflection Glare Points of a Spheroidal Floating 
Bubble 

As a floating bubble is launched, it undergoes transient 

shape oscillations that quickly damp out to a final 

spherical shape.  The dominant transient shape oscillation 

is a quadrupole deformation between an oblate and 

prolate spheroid, given by 
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xs2/a2 + ys2/a2 + zs2/b2 = 1                                                  (18) 

in the spheroid coordinate system.  The spheroidal bubble 

is arbitrarily orientated with respect to a far-zone observer 

in the (Θscatt,Φscatt) scattering direction whose viewing 

screen plane is normal to this direction, and has axes xvs 

and yvs.  The path of the externally reflected ray and the 

one-internal-reflection ray can be traced through the 

bubble [5].  It is found that these two reflection glare points 

continue to be located at equal distances in opposite 

directions with respect to the center of the elliptical image 

of the spheroid on the viewing screen.  But the line joining 

the two glare points is now rotated by the angle Ω with 

respect to the xvs axis.  For side-on incidence of the plane 

wave this angle simplifies to 

tan(Ω) ≈ [(a2/b2) – 1] sin(Φscatt) cos(Φscatt).                  (19) 

The related 4° rotation of the dominant glare points with 

respect to the higher-order glare points is evident in Fig.2.  

The semimajor and semi-minor axes of the elliptical image 

of the spheroid are also rotated by the angle Γ with respect 

to the xvs and yvs axes.  For side-on incidence, this angle 

simplifies to 

tan(2Γ) = -cos(Θscatt) sin(2Φscatt) 

              / [cos(2Φscatt) – sin2(Θscatt) cos2(Φscatt)] .         (20) 

6 Sagittal Caustic of a Spheroidal Floating Bubble 
The transient spheroidal shape of the bubble also spoils 

the point-focusing of the near-zone sagittal caustic 

observed on a viewing screen behind the bubble in the 

Θscatt=0° direction.  The formula for the exact shape of the 

one-internal-reflection sagittal caustic can be determined 

using the wavefront propagation method [6] since the 

spheroid still possesses circular symmetry about its axis.  

For side-on incidence of the plane wave, we are interested 

in the shape of the sagittal caustic in the vicinity of the 

positive z axis outside the bubble for one-internal-

reflection rays that approach the spheroid with near-

grazing incidence.  In this limit the shape of the resulting 

caustic can be expanded in terms of powers of σ.  To first 

order, this gives the four-cusped astroid caustic, 

(xvs)2/3 + [(b/a)yvs]2/3 = a2/3 [1 – (b2/a2)]2/3 ,                     (21) 

seen in Fig.2.  If a threefold-symmetric harmonic shape 

distortion of the spheroid shape were present in addition 

to the dominant twofold-symmetric quadrupole distortion, 

one of the astroid cusps expands into a three-cusped 

butterfly caustic [7].  If a fourfold-symmetric hormonic 

shape distortion was additionally present instead, two 

opposing cusps of the astroid expand into butterfly 

caustics.  One of the authors (M.S.) has observed and 

photographed these higher-order near-zone sagittal 

caustics behind the bubble.     
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Figure 1 Glare points on the surface of a spherical floating 

bubble, and a cross section through the near-zone sagittal axial 

spike caustic on a viewing screen behind the bubble. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Glare points on the surface of a spheroidal floating 

bubble, and a cross section through the near-zone sagittal astroid 

caustic on a viewing screen behind the bubble. 

 

 

 


