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Abstract 

The scope of the present report is the closer look at the 

dynamics of damping processes in MNP in order to 

answer the question which plasmonic quantities are 

damped as such data do not result from the classical EM 

considerations. The model is based on the link between the 

classical EM description of plasmonic properties of MNP 

and the quantum picture in which MNPs are treated as 

"quasi-atoms" or quasi-particles (PQPs). The energy level 

structure with the zero energy level state for non-excited 

plasmon allows studying the system dynamics accounting 

for dissipative processes. 

 

Figure 1 The starting scheme for modelling which relates the 

oscillation energies of LSP modes to the energy levels of 

quantum plasmonic quasi-particle  

 

The evolution of the reduced density matrix of 

quantum open systems is ruled by the master equation in 

the Lindblad form which enables us to distinguish 

between damping processes of populations and 

coherences of multipolar plasmon oscillatory states and to 

establish the intrinsic relations between the rates of these 

processes. The size dependence of the rates of dephasing 

of the collective electron motion and of damping of 

populations are given for gold and silver MNPs on the 

base of the established classical-quantum relations of 

damping channels. 

1 Introduction  
Plasmonic properties of nanoscale structures lay the 

groundwork for many future technologies, applications 

and materials. Plasmonics is based on the excitations of 

surface plasmons understood as surface charge density 

oscillations, which form the standing waves of Localised 

Surface Plasmons (LSP) in the case of finite-size 

nanostructures. In spherical metal nanoparticles (MNPs) 

the basic properties of LSPs can be controlled by their 

radius and manifest in the scattering, absorption or 

extinction spectra in form of the maxima with size-

dependent spectral position, spectral width and intensity. 

The maxima in the spectra reflect the resonant character of 

LSP excitations resulting from the size-dependent intrinsic 

properties of MNP [1]. Such spectra can be predicted by 

the classical Mie scattering theory when calculated for 

consecutive chosen radii. However, Mie scattering theory 

gives no direct information about the size-dependence of 

the pick position in the spectra. 

2 Classical oscillation eneries and damping rates 
of plasmonic cavity modes versus MNP radius  

The dynamics of plasmon excitations is described by 

the important intrinsic functions of MNP's size such as 

resonant frequencies of the cavity modes and damping 

rates of such modes. The excitation of LSP is a resonance 

process which takes place when the frequency of the 

incoming light  fits a self-frequency (-ies) of a plasmonic 

resonator l(R) (of the cavity modes), where l, l = 1,2,3,.. .  

Therefore, the key issue is to find the intrinsic 

properties of a plasmonic cavity i.e. the size-dependent self 

frequencies of plasmon modes l(R) but also the damping 

rates l(R) of the oscillations. Such parameters characterise 

the plasmonic MNPs and can be found by looking for 

solutions of the self-consistent Maxwell equations in 

absence of the incoming light field in connection with the 

continuity relations at the sphere boundary [1]. The 

resulting dispersion relations for surface-localized fields 

define the complex, discrete eigenvalues ħ(l(R) - il(R) /2). 

So the dynamics of surface localized EM fields: 𝐸(𝑟 = 𝑅) =

exp⁡(𝑖𝜔𝑙 − Γ𝑙/2)𝑡 ) is unambiguously determined by the 

material properties of the MNP of a given size and its 

dielectric environment. Found in absence of the 

illuminating radiation, l(R) and l(R) inherently 

characterize an MNP of the radius R in the same way as 

the energy levels and the inverse of lifetimes characterize 

an atom or a molecule. In both cases, these quantities 

manifest in the spectra, when the systems are illuminated.  

3 Quantum modeling of the plasmonic quasi-
particle (PQP) decay dynamics  

Let us ascribe [2] the oscillation energies ħl(R) of the 

classical modes to the discrete energy levels, which are 

distinct from the zero-energy non-oscillatory level by the 

energies ħl(R) (Fig. 1). The corresponding states of the 
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plasmonic systems S in the Hilbert space are |l > with l = 

1,2,3.... The only possible transitions are those with the 

absorption or emission of a photon with the energy ħl. 

Such transitions occur between the state |l > and the non-

oscillatory state |0 >. 

3.1 The density matrix and quantum master equation  

To describe the state of the plasmonic system S we use 

the density matrix which is convenient in describing the 

quantum systems in mixed states and in time-dependent 

problems. The diagonal elements of the density matrix 

correspond to the probabilities pn = Nn/N of occupying a 

quantum states |n >, so they describe the relative 

populations of these states. The complex off-diagonal 

elements of the density matrix in the basis |n >, 

|0 > contain time-dependent phase factors that describe 

the evolution of the coherent superposition of the states.  

As no physical system is absolutely isolated from its 

surroundings, the plasmonic system S has to be considered 

as an open quantum system which is a subsystem of a 

larger combined quantum system 𝑆 + 𝐸,  where E 

represents the environment to which the open system S is 

coupled. Following the main assumption of the basic 

theory of open quantum systems [3], the environment is 

assumed to be a large system with an infinite number of 

degrees of freedom. The interaction of the open system S 

with the environment causes an irreversible behavior of 

the open system S and leads to decoherence 

(randomization of phases) and dissipation of energy into 

the surroundings. 

The dynamics of open systems in the case of Markov 

processes can be described by a quantum Markovian 

master equation in Lindblad form [3]: 

 

 

 

where ρS(t) is the reduced density matrix of the system 

S, and D[ρS(t)] is the so-called dissipator: 

 

 

 

Summation over  extends over all processes of 

coupling with the environment. The dissipator D[ρS] 

describes the environmental influence on the system. The 

`jump' operators Lk describe a random evolution of the 

system which suddenly (at the time scale of the evolution) 

changes under the influence of the environment.  

The first term on the right-hand side describes of eq. (1) 

the unitary evolution of the system S under the action of a 

Hamiltonian H. 

3.2 Two-level system plasmonic system Sl 

The simplest quantum system is a two-level system 

whose Hilbert space is spanned by two states, an excited 

state |l > and a ground state |0 >. The system S is then a 

sum of Sl of independent, open subsystems: 𝑆 = ∑ 𝑆𝑙𝑙=1,2.. . 

Such description is a good approximation for many level 

systems, provided that the transitions to other than the 

ground state levels can be neglected so there is no 

coupling between the modes. Each system Sl is coupled to 

the environment independently. and all assumptions 

about the coupling of the S to the environment remain 

fulfilled for subsystems Sl. The form of the Lindblad 

equation guarantees, that also dynamics of each matrix 

operator 𝜌
𝑆𝑙(𝑡) , 𝜌𝑆(𝑡) = ∑ 𝜌

𝑆𝑙(𝑡)𝑙  is governed by the 

equation in the Lindblad form. 

The Hamiltonian of a two-level system 𝐻𝑙, 𝐻 = ∑ 𝐻𝑙𝑙  . 

Quantum properties of the cavity mode l  are carried by 

the annihilation al⁡ and creation 𝑎l
+  mode “amplitudes” 

(annihilation and creation operators of photons), which 

satisfy: [𝑎𝑙 , 𝑎𝑙
+] = 𝑎𝑙𝑎𝑙

+ − 𝑎𝑙𝑎𝑙
+ = 1. The Hamiltonian of the 

mode l: HF = 1/2ħ𝑙(𝑎𝑙𝑎𝑙
+ + 𝑎𝑙𝑎𝑙

+) = ħ𝑙(𝑎𝑙𝑎𝑙
+ + 1/2). 

Dropping the zero-point energy ħ/2  from the 

Hamiltonian by redefining the zero of energy, we 

introduce the Hamiltonian 𝐻𝑙 for the plasmonic QA in the 

form: 𝐻l = ħ𝑙𝜎+𝜎−,  where and 𝜎−  and 𝜎+  and are the 

energy lowering (resulting in photon creation) and energy 

rising operators (resulting in photon annihilation) in the 

PQP system). 

3.3 Dissipative processes 

An excited plasmon, similarly as an excited atom, 

decays to the state of lower energy spontaneously emitting 

a photon. In the theory of open quantum systems, such 

decay is assumed to be due to the coupling of the system 

to the environment, which introduces radiative losses due 

to the spontaneous decay (coupling to the EM vacuum 

fluctuating fields) and heat losses due to the inevitable 

collisions of electrons in a metal (coupling to a heat-bath in 

a thermal equilibrium state with an infinite number of 

degrees of freedom). Dynamics of both coupling processes 

is assumed to be much faster than those of the open 

system Sl, so the dynamics of Sl (andthose of S) is 

Markovian. The jump operators describing these processes 

are: 

 

 

where Γ𝐼
𝑠 = Γ𝐼

𝑟  is the rate of radiative, spontaneous 

decay and Γ𝐼
𝑐𝑜𝑙 = Γ𝐼

𝑛𝑟 is the rate of nonraditive, collisional 

losses resulting in absorption and heat production. 

3.4 Free evolution of populations and coherences 

After algebra involving 2x2 matrices, the Lindblad 

master equation including radiative and nonradiative 

dissipation processes one can find the evolution of 

populations of the excited end ground state 

𝜌𝑙𝑙(𝑡), 𝜌00(𝑡)⁡ and of coherences ⁡𝜌𝑙0(𝑡) = ⁡𝜌00
∗ (𝑡)  in the 

form: 



 

 

LASER-LIGHT AND INTERACTIONS WITH PARTICLES                         AUGUST 21-26TH, 2022, WARSAW, POLAND 

 

 

where Γ𝑙 = Γ𝑙
𝑟 + Γ𝑙

𝑛𝑟 .⁡ 

3.5 Conclusions:  

The dephasing of coherences: Γ𝑙
𝑐𝑜ℎ = 1⁡/2Γ𝑙 is twice as 

slower as damping of populations: Γ𝑙
𝑝𝑜𝑝

= Γ𝑙 .⁡  

The rates of population damping Γ𝑙
𝑝𝑜𝑝 and Γ𝑙

𝑐𝑜ℎ ⁡⁡depend 

on the size of a MNP. For gold and silver nanoparticles 

these rates can be accessed from our classical model based 

on the dispersion relation considerations [4]. In gold MNP 

of several nanometers the damping rates Γ𝑙
𝑝𝑜𝑝 and Γ𝑙

𝑐𝑜ℎ are 

larger than those in silver, however in larger MNPs of tens 

of nanometers this relation changes.  
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